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Abstract

In system dynamics, mathematical modeling of dynamic systems is an essential tool for
the study of the physics behind the control system. For our study, a small mass slide on the
incline viscous plane forced with an impulse from its initial condition of zero velocity and zero
position. Analytical method was used for solving ODEs and for numerical calculations graphical
and symbolic mathematical software such as Maple and MatLab was used. Euler method,
trapezoidal and bisection method were used for numerical calculation. Potential energy, Kinetic
energy and total heat dissipated were also evaluated for the give condition as per the assigned

parameters.



1.0 Nomenclature
F = force (N)

m = mass (kg)

. N-—-s
b = viscous ( )
m

— 7 m
g = gravity (S—Z)
H = height (m)
I = impulse (N — s)
v = velocity (?)
x = position (m)
0 = angle (deg)
t = time (s)

fp = damping force (N)



1. Background

A mathematical model can be broadly defined as a formulation or equation that
expresses the essential features of a physical system or process in mathematical terms. In very
general sense, it can be represented as a functional relationship of the form

independent variables, )

Dependent Variable = f ( parameters, forcing fucntions

where, the dependent variable is a characteristic that usually reflects the behavior or state
of the system. Independent variables are usually dimensions, such as time and space, the
parameters are reflective of the systems properties or composition and the forcing functions are
external influences acting upon the system.

2. Theory

The mathematical expression, or model, of the second law is the famous Newton second
law of motion, given by the equation,

where,
F = force (N)
m = mass (kg)

. m
a = acceleration (5_2)

For our given system,
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Fig.1.0 Free Body Diagram



In Z-direction,

X E, =ma,
N —mgcosf =0 (* a, =0)
N = mgcosf — — — — — — — — (i)
In X-direction,
2. E. =ma,
I x 6t + mgsinf — f, = ma, (* fp = bv(t))

I =6t

+ mgsinf — bv(t) = mv(t)

For further simplification of the equation above, by Dirac delta function,

a) There required governing first order differential equation of motion is,
x(ot) = 0]

v(t) +2v(t) = gsin —— — —— — — (iii) with initial Condition, -
m v(o™) = —~

3. ODE method
We have the governing differential equation of motion
mv(t) + bv(t) = gsinb

Part 1: Homogeneous solution
Write the characteristics solution.

r+

-bt
vy (t) = Ciem

Part 2: Non -homogeneous solution
Assumed the particular solution for the equation is constant.

v, (t) = c and v(t) =0

b
0+ —c = gsind
— €= gsin

mgsinf
‘T
v(t) = vp(t) + vp(t)

mgsinf

—bt
v(t) = Ciem +T



I
Using initial conditions @t = 0,V(0%") = —
m

~bro in6
v(0) = Ciem +mgzm

I mgsiné
C, = _QT

Therefore, the equations for the velocity is,

ing\ =bt ind .
Dyv(t) = (= - &) em + L0 — — —(iv)

Again, integrating the equations — — — (iv)

dx I mgsin® —bt mgsind
G (_ _g_)e m  mesing
dt m b b

x(t) - _ % (L _ mgsinG) e%’t + mgsin@xt L

b b
Using initial conditions @t = 0,X(0*) =0

m /(1 mgsin@\ bt mgsinfxt
x(t)=—;(——g—)em B

m b b +C

m /(1 mgsiné
0= __(_ _ mgsint

= (- - )+0+c

C= (L _ngsine)
b b2

Therefore, the equations for the velocity is,

m

b b

I  mgsinf\ -bt mgsind *t I m?gsind
b)x(t)=——(a—g—)em+g—+< d )————(v)

b



4. Laplace Transformation

The equations for the velocity is
v(t) + %v(t) = gsinf

The Laplace transformation of the equations, L(v(t)) = V(s)

sV(s) = v(0) + 2V (s) =

V(s)(s+%)=M+i

gsiné
s

s m
ms+b mgsin6+Is
V(S)( m ): ms
__ mgsin@+Is
V(S) - s(ms+b)
__ mgsin® Is
V(S) - s(ms+b)  s(ms+b)
in@ I
V(S) _ gsin

s(s+%) m(s+%)

ﬁ_l[V(S)]=gsin9£‘1[ : l+i*,£‘1l ! l

s+ m (s+2)

v(t) = gsind * % [1 — e_(l:rf)] +nile_(l:rf)

q —bt q
U(t) _ (i _ mgzme) o mgzme
The equations for the position is
x(t) + %x(t) = gsin6
The Laplace transformation of the equations, L(x(t)) = X(s)
52X (s) — sx(0) = x(0) + = [sX(s) — x(0)]

X(s)(52+b—nj)=M+L

__gsin6
T s

s m
ms?+bs mgsinf+Is
x(s) ( ) ="
m ms
mgsin@+Is
X)) =—F—=
s(ms?+bs)
mgsiné Is
X(s) = - >
s(ms?+bs)  s(ms?+bs)
gsinf 1

X(s) =

bs bs
2 m(s2
s(s m) (S m)

ﬁ_l[X(S)]=gsin9L‘1l : l+i*L‘1l L l

b b
2(s4— m +=
s2(s+) s(s+)

x(t) = gsind * ,:_22 [%t -1+ e_(%)] + i *%(1 — e_(%)>

__mgsinft m?gsind = m?gsinf —(kt o1 (%
x(t) = - t— e (m)+g—ge (m)

3 -bt , -
x(t) = _%(L _ M) e w4 mgsingst (L m gsme)

m b b b b2




5. Time to reach the bottom.

Case 1: Time to reach the bottom of the slide for viscid case,b # 0,

sind b \m b b b b2

H m (1 mgsine) -bt N mgsing =t <I ngsin0>
em _— -
Time to reach the bottom of the slide for viscid case, b # 0, and the
transcendental equations was solved in symbolic mathematical software Maple 13.

However, Impulse, |, is represented by, f, in the equation as, I, is an inbuilt parameter
for imaginary number in Maple software.

bt
b .
oS -— m-g-sin(®) -¢
Solve[ m(i_M].eXp o mgesin(0)t

1

3 In(exp) Hb — In(exp) f b sin(©)
b sin(©®)~ g m In(exp)

+ sin(@)2 m® g LambertW % [ln( exp) (fb
sin(@) m” g

_ In(exp) (Hb2+m2gsin(®)2—fb sin(@)) ]

1712gsin(®)2

— m* g sin(©)) e

+ In(exp) m’ g sin(G))2

Case 2: Time to reach the bottom of the slide for viscid case,b =0,

. b
v(t) + —v(t) = gsinb

m

d?x

ok gsin6



Intregrating the equation twice with respect to, t as a variable

v(t)=gsinft+¢;, - ————————————— ——— — — (v)

1
x(t) = Egsinet2 ottt ———————— ——— — — — — (vi)

I
Using the boundary condition, x(0) = 0,v(0) = p”

I I
—=gsind0 +¢; - ¢, =—
m_ 9 Lo T m

1
0= EgsinBO2 +¢0+c, 2, =0
Using the constant, in eqaution — — — —(vi)

(t) L gsi ot% + ! t i
x(t) = > gsin - (vii)
Time to reach the bottom of the slide (t) = ty, X (t) = H/sin6

A 1 '6t2+1t
—— = gsin —
2.9 b b

sinf
1 . b J

> solve =—-g-sin(@®)-t+ —-1,¢t

sin(@) 2 g:sin(®) m

J=J P +2gmH  J+JS+2gmH . . o .
— g , - g Ignoring the negative root as time is always postive
g msin(0©) g msin(©)
I+ 1?4+ 2gm?H

tpy=-————"—"F7—<“"=""-"""""""—"-"—-"—-"——- (viii)

mgsinf

6. Terminal speed

Terminal velocity of the falling boject when the bock speed as time (t) — o is

I  mgsin@\ -pt mgsinf
v(t) = <— _g )em + g
m b b
() (I mgsin9> —bo +mgsin6 mgsinf
x)=|— — m -
v m b )¢ b b
mgsind
Voo = S (ix)




7. Characteristics roots, the corresponding constant, the residues

Assumed data for MatLab Numerical calculation:

m b 0 H 0 |
[kg] |[N-s/m] | [m/s] | [m] | [deg] | [N-s]
2 5 9.8 10 30 1

MatLab Results under given inputs:

MatLab Results under given inputs:

Constant coefficient of homogenous solution

RESUES

Roots

The characteristic roots for dx"2/dt*2+(b/m) *dx/dt=gsin (theta) :
rl:

The constant of homogeneous solution for dx”2/dc”2+ (b/m)*d=x/dt=g=in (theta) :
Cl:
0.5840

The residues of given laplace transformation X(=) =(mgsin(theta)+Isz)/ (m="3+bs=)) i=
Resgidue 1:
0.5840

Residue_2:
-0.5840

Residue 3:
1.9600

fe >> |




8. Numerical Solution of ODE
Euler’s method for velocity:

: b . dv . b
v(t) + ;v(t) = gsinf - — = gsinf — ;v(t)
Vier Vi _ g b
it gsin6 —V;

b
Vit = (gsine - Evi) (tiy1 —t) + vy

Euler Velocity
+  Exact Velocity
b — — Inviscid sliding
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Paositionirm)

Euler’s method for position:

1 mgsin®\ 2t  mgsin®
m

b b
dx <I mgsinH) -bt mgsin@
—_— —_ = = m -
dt m b b
I  mgsinf\ -pt mgsinf
X = (= = )em +—— |+ (tua — £ + %,
Euler Position
+  Exact Position
— — Inviscid sliding |
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9. Numerical Solution for the transcendental :
Bisection method to solve for the time (t,) for viscid case:

H m(l mgsine) -bt  mgsing *t I m?gsinf
sind b \m b b b b2
sin(l)
> _5.
y :=_1—075 + % %—29.8-76 'exp( ( ; ) ) +2
sin(z)

Smpl]i smPEJJ
6 1 6

98—t | T~ 498 —

2y

~20.28400000— 0.5840000000c >+ 1.960000000¢

> plot(y,t=0.30)
50
20

10

—10

[

Graphical approximation: 10.33 sec

Set the boundary for upper and lower limit:
tl=10

tu=11

Enter lower limit of approximated root wvalue: 10

Enter upper limit of approximated root wvalue: 11
The root is 10.5021
e >



I mgsinf\ -pt mgsind
v(t) = (— — )e m
m b b
1 2%98=+sin(30)\ -5t 2 *9.8 xsin (30)
”(tb):<§_ 5 )ez * 5

From viscid case we get t, =10.502 s

2%98+sin (30)\ -5t 2 x9.8xsin (30)
)e 2+

v(ty) = (0.5 - - :

v(tbm.scid) =196m/s

Case 2: Time to reach the bottom of the slide for inviscid case,b = 0,
v(t) = gsinbt +#@t — tp = 2.75----from the roots in eqn (viii)

v(t) = 9.8 xsin(30) * t;, + 0.5

v(tbinviscid) =14 m/s

10. Numerical Solution for the potential energy, Kinetic energy
and dissipated heat:

[Reminder: all symbolic calculation maple are done under impulse, I, represented by, J]

Potential Energy, P(t) = m * g(H — x(t) * sinf)
= 19.6(10 — x(t) * 0.5)
= 196 — 9.8x(t)

Kinetic Energy,K(t) = 0.5 x m(v(t))z
= (v®)°

tp
Total heat dissipated, Q(t) = j b * (17(1:))2 dt
0

ty 2
= Sfo (v())"dt

heat dissipated, D(t) = b * (v(t))2
= 5(v(1))*



-t

0.5840000000c 2 4 1.960000000¢ — 0.284000000!

o (L - Amgsl)) ) b ), v nlo)

~1.460000000e >+ 1.96000000!

p = 196 — 9.8 x Potential Energy(p)
5

-t
198.7832000— 5.723200000¢ > — 19.20800000:
k == 0.5-m- v* Kinectic Energy(K)
5 2
-1
1.0 [—1.4600000006 24 1.960000000)
d == b-v? heat dissipated(d)
5 2
-1
5 (-1.460000000@ 2 4 1.960000000]
R :=p + k; Totalenergy(R) = PE + KE
5
-1
198.7832000— 5.723200000e 2 — 19.20800000¢ + 1.0 (
5
-t

2
~1.460000000c > + 1.960000000j

plot([p, k,d,R],t=0..10.5021)

0+ T T T T T T - T - T
0 2 4 6 8 10
f(s)

Patential Energy —— Kinectic Energy Heat Dissipated total Energy

10.5021
J d dr

0
The total heat dissipated due to damping(Q) = 192.409536:



11. Numerical Solution for the terminal condition:

> plot(exp(2.5-1) — 744897 1=1..2)
S04
A
S0
204

104

104

—Z204

—3=04

-1 [0 A X

Enter lower limit of approximated root wvalue: 1
Enter upper limit of approximated root wvalue: 2
The root is: 1.7234

fe >> |

I mgsine) -bt  mgsind

t)=— — m
v(®) (m b )" T
1 mgsing\ -bt mgsind
1.01 * v(o0) = (— — g—) em + mgsmy
m b b

1.01 * 1.96 = (—1.46)e 25t + 1.96
e?5t — 74,4897 = 0

t1019 = 1.7234 s [ time body to reach 101% terminal speed ]




myl mgsinf\ -t mgsinf xt I m?gsinf
B s

X =-3 b

m b
x(t101) = —0.4 % (—1.46) * 0.01345 + 1.96 * 1.7324 + (0.2 -0.784)
x(t101) = —0.4 % (—1.46) * 0.01345 + 1.96 * 1.7324 + (0.2 -0.784)

x(t101) = 2.819 m[ distance the body travels by the time it reach 101% terminal speed ]



Appendix:

1. MatLab code for Euler and Exact solution for Velocity
clear all
clc

% The problem to be solved is:
$v' (L) +(I/m)v(t)=gsin (theta)

%$This problem has a known exact solution
$v(t)=(I/m- (m*g*sin (theta)) /b) *exp ((-b*t)/m)+ (m*g*sin (theta)) /b

o\

Numerical Parameters

m = 2; % mass of the sliding box [kg]

b = 5; % damping force [N-s/m]

g 9.8; % acceleration due to gravity [m/s”2]
H= 10; % height of ramp [m]

theta= (30*pi)/180; % slope of the ramp [rad]
I= 1;% impulse of the ramp [degreee]

y _0=0; % initial condition for position [m]
v_0=I/m; % initial condition for velocity [m/s]
v(l)=v_O;

h=0.05;

t 0=0;

t £=3;

t=t O:h:t £;

for i=l:length(t) -1,
dvdt=(g*sin (theta) - (b*v(i))/m);
v(i+l)=v (i) +dvdt*h;
end
V_Exact=(I/m - (m*g*sin(theta))/b)*exp((-b*t)/m)+ (m*g*sin(theta)) /b;
V_inviscid= g*sin(theta)*t+I/m;

plot(t,v)

hold on

plot(t,V _Exact, 'r+')

hold on

plot(t,V inviscid, 'b--")

hold off

xlabel ('Time (s)'")

ylabel ('Velocity (m/s)")

legend ('Euler Velocity', 'Exact Velocity', 'Inviscid sliding')

function y = ftrans(t)
y = y =-H/sin(theta)-m/b *(I/m - (m*g*sin (theta)) /b) *exp ((-
t)/m)+ (m*g*sin(theta) *t) /b + I/b -(m"2*g*sin (theta))/b"2;

O oo de

*



2. MatLab code for Euler and Exact solution for position:

clear all
clc

% The problem to be solved is:
$x' (t)=(I/m -mgsin?/b)*e”((-bt)/m)+ mgsin?/b

%This problem has a known exact solution
$x(t)=-m/b*(I/m - (mgsin (theta))/b)*e”((-bt)/m)+
% (mgsin (theta)) *t) /b+ (I/b —(m"2 gsin(theta))/b"2 )

% Numerical Parameters
m = 2; % mass of the sliding box [kg]
b = 5; % damping force [N-s/m]
g = 9.8; % acceleration due to gravity [m/s"2]
H= 10; % height of ramp [m]

(30*pi) /180; % slope of the ramp [rad]
I= 1;% impulse of the ramp [degree]

x 0=0; % initial condition for position [m]

v_0=I/m; % initial condition for velocity [m/s]

x(l)=x 0; % initializing condition for velocity [m/s]

h=0.05; % step of iteration

t 0=0; % initial time [s]

t f=3; % final time [s]

t=t O:h:t f; % initializing matrix of independent time variable

for i=l:length(t)-1,

dxdt=(I/m - (m*g*sin (theta)) /b)*exp ((-b*i)/m)+ ((m*g*sin (theta)) /b);
X (i+1l)=x(i)+ dxdt*h;
end
x Exact=(-m/b)*(I/m - (m*g*sin(theta))/b)*exp((-b*t)/m)+ ((m*g*sin (theta)*t) /b)+
(I/b - (m~2*g*sin(theta))/b"*2 );
x_inviscid = (0.5*g*sin(theta)) *t+(I/m)*t;
plot(t,x)
hold on
plot(t,x Exact, 'r+')
hold on
plot(t,x inviscid, 'b--")
hold off

xlabel ('Time (s) ")
ylabel ('Position(m) ")
legend ('Euler Position', 'Exact Position', 'Inviscid sliding')



3. Numerical solution for transcendental equation:

function y = ftrans(t)

% function f1l

= 2; % mass of the sliding box [kg]

= 5; damping force [N-s/m]

= 9.8; % acceleration due to gravity [m/s"2]

H= 10; % height of ramp [m]

theta= (30*pi)/180; % slope of the ramp [rad]

I= 1;% impulse of the ramp [degreee]

y =-H/sin(theta)-m/b *(I/m - (m*g*sin(theta)) /b)*exp((-b*t)/m)+ (m*g*sin(theta)*t) /b
+ I/b - (m"2*g*sin(theta))/b"2;

o©°

Q o 3

% function y = ftrans(t)
% vy = y =-H/sin(theta)-m/b *(I/m - (m*g*sin (theta))/b) *exp ((-
b*t)/m)+ (m*g*sin(theta)*t) /b + I/b -(m"2*g*sin (theta))/b"2;

clear all

clc

tl = input ('Enter lower limit of approximated root value: )
tu = input ('Enter upper limit of approximated root value: ');
tr = (tl + tu)/2;

while abs (ftrans(tr))>0.01

test = ftrans(tu) * ftrans(tr); % form test product
if test < 0
tl = tr; % root is above average
else
tu = tr; % root i1s below average
end
tr = (tl + tu)/2;

end
fprintf ('The root is %g\n', tr)



